
Journal of Computational Physics 208 (2005) 289–314

www.elsevier.com/locate/jcp
An arbitrary Lagrangian Eulerian method for
moving-boundary problems and its application

to jumping over water

Jie Li a,b,*, Marc Hesse a, Johanna Ziegler a, Andrew W. Woods a

a BP Institute, University of Cambridge, Cambridge, UK
b Engineering Department, University of Cambridge, Cambridge, UK

Received 2 September 2004; received in revised form 16 February 2005; accepted 17 February 2005

Available online 14 April 2005
Abstract

We develop an ALE (Arbitrary Lagrangian Eulerian) moving mesh method suitable for solving two-dimensional

and axisymmetric moving-boundary problems, including the interaction between a free-surface and a solid structure.

This method employs a body-fitted grid system where the gas–liquid interface and solid–liquid interface are lines of

the grid system, and complicated dynamic boundary conditions are incorporated naturally and accurately in a

Finite-Volume formulation. The resulting nonlinear system of mass and momentum conservation is then solved by a

fractional step (projection) method. The method is validated on the uniform flow passing a cylinder (a two-dimensional

flow with a solid structure) and several problems of bubble dynamics (axi-symmetrical flows with a free surface) for

both steady and unsteady flows. Good agreement with other theoretical, numerical and experimental results is obtained.

A further application is the investigation of a two-dimensional mechanical strider (a mass-spring system) interacting

with a water surface, demonstrating the ability of the method in handling the interaction between a solid structure

and a free surface. We find that the critical compression required to jump off the water surface varies linearly with

spring constant for stiff springs and algebraically with exponent 0.7 for weak springs.
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1. Introduction

In recent years there has been a growing interest in bio-mechanical flows, which often involve solid struc-

tures and free surfaces as well as the interaction between them. One example is the hydrodynamics under-

lying the surface locomotion of semi-aquatic insects [1]. Fig. 1 shows a leg of a static strider resting on the
free surface. The distortion of this surface generates a curvature force per unit leg length equal to 2c sin(h),
where c is the surface tension of water, and h the contact angle with the horizontal. Walking or jumping of

the water strider on the liquid surface is a highly nonlinear process, involving the interaction between a

moving free surface and a solid structure. One of the greatest difficulties is that the location and the shape

of the air–liquid–structure interfaces (boundaries) are time-dependent. During the flow these boundaries

evolve, and may undergo severe deformations. These moving boundaries play a major role in defining

the system and must be determined as part of the solution. In a numerical treatment of the moving bound-

ary, we ought to address three questions: (1) how do we represent the boundary on a finite mesh? (2) how
will the boundary evolve in time? and (3) how should we apply boundary conditions on the boundary? The

aim of this work is to develop a novel numerical method suitable for these moving boundary problems.

Numerical solutions of moving boundary problems can be classified into two categories, moving grid

methods and the fixed grid methods. Each method has its own advantages and disadvantages. In the con-

text of fixed grid methods, there are surface tracking methods and volume tracking methods, such as the

front-tracking method [2,3], the volume of fluid (VOF) method [4–7] and the level-set method [8]. Methods

in this category are capable of simulating very complex interface motion, and new algorithms have been

developed to improve the accuracy in the treatment of boundary conditions [9,10]. Moving grid methods
employ a so-called boundary-fitted grid system [11–13]. This type of method has the tremendous advantage

that the boundary condition is treated neatly and resolved very accurately, because the moving boundary

coincides with one line of the numerical grid. The numerical method developed in this work falls into this

second category.

We will discuss our ALE method on a stationary grid, before we extend it to a moving grid. Numerical

methods for incompressible fluid flows have been successfully developed for fixed grids with curvilinear

coordinates. One of the popular methods is the fractional step or projection method using the primitive

variables velocity and pressure as computational variables [14]. This method decouples the continuity equa-
tion from the momentum equations by solving a Poisson-like elliptic equation for the pressure. Rosenfeld

et al. [15] employed the volume fluxes defined on cell faces as primary variables and discretized the govern-

ing equations on a staggered grid using a finite-volume method (Fig. 2(a)). This approach is a natural
Fig. 1. A leg of a static strider on the free surface, whose distortion generates the curvature force per unit leg length 2c sin(h) that
supports the strider�s weight (Courtesy Hu et al. [1]).



Fig. 2. Three types of meshes for numerical methods in curvilinear coordinates: (a) a staggered grid with the volume flux defined on its

corresponding cell face; (b) a colocated-grid method with additional velocity components defined at cell center; (c) a ALE method with

additional velocity components defined at cell corner.
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extension of the standard staggered-grid method (also call MAC method) [16] in Cartesian coordinates. The

discretization of the momentum equations is quite complicated, and the numerical computation of these

equations expensive. The use of Cartesian velocity components as the primary dependent variables simpli-

fies the form of the governing equations and their discretization is straightforward. However, solution

methods for the incompressible flow, based on a non-staggered grid in the classic form, are not stable
and produce spurious oscillations in the pressure equation, i.e., the ‘‘checkerboard’’ pattern [17]. In order

to overcome this difficulty, Rhie and Chow�s method [18] combined the stability of the staggered grid for

the pressure equation and the efficiency of the non-staggered grid in computing the momentum equations.

They computed the velocity components in the momentum equations at the cell center, and reinforced the

mass conservation (the continuity equation) on the staggered grid (Fig. 2(b)). The volume fluxes U and V

needed in the pressure equation are interpolated from the velocity u and v defined at the cell center. The use

of the pressure gradient in the momentum equation and the pressure equation is not consistent in this meth-

od. The mass conservation is only satisfied on second order accuracy [19]. This method has been applied to
unsteady flow problems [20,21].

In this work, we will employ a semi-staggered grid method, which is a special case of the more general

ALE (Arbitrary Lagrangian Eulerian) method. Our method is a compromise between the two methods

mentioned above: although the velocity components are defined at the same location (at the cell corner),

their location is different from the pressure location at the center (Fig. 2(c)). This grid layout has received

less attention in the finite-volume community. It was, however, widely advocated by the finite-element com-

munity who named it the Q1Q0 method. A very attractive feature of this method, shown in [22], is that the

dynamic boundary condition can be incorporated naturally and accurately. This is the reason we have cho-
sen the ALE method as the basis of this work. However, our ALE method is different from the Q1Q0

method used in the finite-element community. First we use a finite-volume methodology to discretise the

pressure equation and momentum equations. More importantly, the Q1Q0 method is marginally unstable

because of the checkerboard oscillation pattern in the pressure equation. The treatment of the pressure in

our ALE method is similar to the one of the colocated-grid method we discussed above. The mass conser-

vation is reinforced on the pressure cell in our method, and the volume fluxes U and V needed in the pres-

sure equation are interpolated from the velocity u and v at the cell corners. In summary, the staggered-grid

method, the colocated-grid method and the ALE method share the common approach in dealing with the
pressure equation, and its solution is efficient. Indeed, the same pressure solver can be used in these three

methods without any change once the right-hand side (the source term) is computed.

For an initial-value problem with moving boundaries, a numerical method must address a crucial ques-

tion: at which time level the boundary conditions must be satisfied. For reasons of simplicity and clarity, we
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employ an explicit scheme in our method. We suppose that we know the velocity at time level n. All bound-

ary conditions are to be satisfied on time level n, and the velocity field at the time level n + 1 is computed on

the grid of time level n. We then generate a new grid for time level n + 1, and interpolate the velocity to the

new grid. Our method is therefore first order in time. This first order accuracy is not a constraint for the

proposed investigation of a mechanical strider (a mass-spring system) interacting with a water surface in
this work. We note that our method is not a finite-volume method in the strict sense. The finite-volume

methodology is applied only to the stress tensor term while non-conservative schemes are used to treat

advective terms [4]. This is consistent with the use of the above interpolation, which does not conserve

the physical quantities neither. We conceived a non-conservative method because of its simplicity. In many

cases, a conservative method may be desirable. For example, based on discretizing time as well as space

with the finite volume principle, the integrated space–time finite-volume method enforces global conserva-

tion for time-dependent moving boundary problems [23].

Bio-mechanical flows often involve non-Newtonian liquids with surfactant affecting the surface ten-
sion of the air–fluid interface. For example, some insects drift on water by injecting a chemical at the

rear. This chemical reduces the surface tension behind their bodies so that the insects are pulled for-

ward. Another example is the airway reopening flow, where the air has to enter the fluid-filled airways

in the lung of a newborn baby for the first time. In this work, we consider only a Newtonian liquid

with a constant surface tension. It is, however, easy to incorporate properties of a non-Newtonian li-

quid and a surfactant induced variation on the surface tension in our method. This feature makes the

ALE framework very attractive.
2. Governing equations and boundary conditions

The fluid flows involving free-surfaces, solid structures as well as the interaction between them are often

highly nonlinear processes. We shall compute these flows numerically. The flow of the liquid is governed by

the incompressible Navier–Stokes equations. In the two-dimensional case, the continuity equation reads
ou
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and the momentum equation
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where u and v are horizontal and vertical velocities, and p is the pressure. We consider the gas to be incom-

pressible and at constant pressure p0. Without loss of generality, we assume the constant pressure p0 = 0.

Hence the dynamic boundary condition on the free-surface expresses the following force balance:
ð�pIþ lDÞ � n ¼ cjn; ð4Þ

where
D ¼ ruþ ruð ÞT
h i

¼
2ux uy þ vx

uy þ vx 2vy

� �
ð5Þ
is the strain rate tensor, c the surface tension, j the curvature, and n the normal vector of interface. And we

also require the kinematic boundary condition on the gas–liquid interface:
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dx

dt
¼ u; where x ¼ ðx; yÞ; ð6Þ
which means the interface moves with the speed of the fluid.

A well-studied boundary condition on the structure–liquid interface is a Dirichlet condition on the veloc-

ity. We have also the possibility to prescribe a force on this interface as boundary condition. This type of

boundary condition is in practice satisfied by iterating on the Dirichlet condition of the velocity. We should

discuss this boundary condition in detail later.
3. Numerical method

We employ a moving grid method in which the free surface and the structure–fluid interface coincide

with lines of the numerical grid. It is an appropriate choice for the flow problem we study in this work, since

the interface only undergoes moderate deformation. For the case where the interface undergoes severe

deformation, even breakup, a fixed mesh method is more appropriate. Condition on the free surface is ex-

pressed naturally in terms of the primitive variables, see Eq. (4), this fact motivates us to develop a new
ALE (Arbitrary Lagrangian Eulerian) method, where the spatial discretization of the primitive variables

uses a partially staggered approach: the pressure p is defined at the cell center while both components of

the Cartesian velocity u are defined on the cell corner (see Fig. 3). As shown in [22], the dynamic boundary

condition can be incorporated naturally and accurately in the ALE method. This is done by expressing the

stress force in the momentum equation in the finite-volume formulation. For a cell on the boundary with

area AX and face lengths Dl (see Fig. 3),
r � pIþ lDð ÞAX �
Z
X
r � pIþ lDð ÞdA ¼

Z
oX
ðpIþ lDÞ � ndl

� ðpIþ lDÞ � nDlÞ½ �E þ ðpIþ lDÞ � nDlÞ½ �W þ ðpIþ lDÞ � nDlÞ½ �N þ ðpIþ lDÞ � nDl½ �S:
We apply the boundary condition on the south face. From Eq. (4), we substitute the stress force

(�pI + lD)n on the south face by the surface tension force cjn. Our numerical method does not require

the mesh to be orthogonal; the orthogonality of a mesh is desirable but not easy to obtain in many cases.

Our method is therefore flexible.
. ALE mesh. The pressure p is defined at the cell center while both Cartesian velocity u and v are defined on the cell corner.
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3.1. Projection method

We first solve the coupled continuity equation (1) and momentum equations (2) and (3) with proper

boundary conditions on a fixed mesh for the time tn = nDt. We employ an explicit projection method

[14]. An approximate velocity u* is calculated without the pressure gradient $p from the momentum equa-
tions. We assume that the velocity un at time tn is known:
u� � un

Dt
¼ FðunÞ; ð7Þ
where the term F(un) includes the convection, diffusion terms and body forces in the momentum equation.

In general, the resulting flow field u* does not satisfy the continuity equation. However, we require that

$ Æ un+1 = 0 and
unþ1 � u�

Dt
¼ �rpn: ð8Þ
Taking the divergence of Eq. (8), we obtain a Poisson-like equation
r � ðrpnÞ ¼ r � u�
Dt

¼ r � ðFðunÞÞ: ð9Þ
The solution of this equation is determined with appropriate boundary conditions for the pressure.

The velocity and the pressure are intimately related in an incompressible flow. Only one of them can be
prescribed on a boundary. A commonly used boundary condition is a Dirichlet condition on the velocity.

This is also the simplest boundary condition to use on a fluid–structure interface. The relevant boundary

condition on the pressure is a Neumann-type condition. On the free interface, the boundary condition

for the pressure is dictated by the balance of the normal stresses
pn ¼ nðlDnÞn� cnjn: ð10Þ

This condition is derived from Eq. (4) and is a Dirichlet condition for the pressure. As pointed out in [22],
the time �index� on p in Eqs. (8) and (9) is perfectly proper; it should not be pn+1 as many believe. Eq. (9) is

the best equation to use to prove this assertion. The RHS of Eq. (9) and the Dirichlet boundary condition

Eq. (10) are completely determined by terms at the time step n, and we should not forget that the mesh we

use here is still the one at the time step n.
3.2. Moving mesh method

We remind the reader that until now we have worked on the mesh at time tn. From Eq. (8), we compute
the velocity field for the time tn+1 on this same mesh. We then compute the new free surface and the fluid–

structure interface through the Lagrangian formula
xnþ1 ¼ xn þ uðDtÞ: ð11Þ

In our method, the interface is represented by a series of marker points ri, i = 1, . . . , N, on the surface. A

cubic spline is used to obtain a continuous smooth parametrization of the surface and compute the surface

curvature accurately.

Finally, we generate a new mesh xn+1 which fits the new free surface and the new fluid–structure inter-

face. The velocity field on the new mesh is extrapolated through
unþ1ðxnþ1Þ ¼ unþ1ðxnÞ þ ðxnþ1 � xnÞ � r � ðunþ1ÞðxnÞ: ð12Þ

This step can also be interpreted from the composite rule of derivatives
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du

dt
¼ ou

ot
þ vru; ð13Þ
where v is the mesh motion speed.

3.3. Spatial discretizations

The above subsection discusses the temporal discretization of the governing equation. Now we address

the spatial discretization. We first provide the mathematical formulae related to the curvilinear coordinates
that we need in the discretization of the momentum and the pressure equations. We follow the development

given by [24,21] and the geometric arguments in [25]. Given a set of curvilinear coordinates n and g, with
unit spacing on the computational grid in the logical domain (Dn = Dg = 1), integers (i, j) can be used as

discrete curvilinear coordinates. Fig. 4 shows a typical mesh cell in the physical domain (x, y) and in the

computational plane (i, j). Note that the mesh is defined by two-dimensional grid points ðx̂i;j; ŷi;jÞ, while
the center (xi,j, yi,j) of cell (i, j) is defined as the average of the coordinates of its four corners. We denote

the physical quantity / at the cell center as /i,j, at the right face center /iþ1
2
;j, and at the top face center /i;jþ1

2
.

All Cartesian derivatives of a variable, i.e. /, can be related to the n and g derivatives using the chain
rule,
/n ¼ /xxn þ /yyn;

/g ¼ /xxg þ /yyg;
and solving the linear system for /x and /y, we obtain
/x ¼
1

J
yg/n � yn/g

� �
; ð14Þ

/y ¼
1

J
xn/g � xg/n

� �
; ð15Þ

J ¼ xnyg � xgyn: ð16Þ
J is called the Jacobian of the transformation from physical space with Cartesian coordinates x and y to
logical space with Cartesian coordinates n and g.

As reported in [4], a conservative scheme loses, in general, one order of formal precision for the advective

terms. Hence, we chose a non-conservative finite-difference scheme for these terms. All derivatives in the
Fig. 4. The same computational mesh shown in the physical and the logical domain.



Fig. 5. (a) Three velocity cells and nodes along a line of g = g0 and increasing n on a non-uniform mesh. (b) The interpolation scheme

used to obtain the first derivatives with respect to the logical coordinates.
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velocity gradient $u are mapped into the logical domain using Eqs. (14) and (15). The derivatives in the

logical domain are approximated using the interpolation scheme shown in Fig. 5(b).
Fig. 6
o/
on

� �
i;j

¼ k
o/
on

� �
i�1=2;j

þ ð1� kÞ o/
on

� �
iþ1=2;j

; ð17Þ
where the derivatives at the midpoints (/n)i+1/2 and (/n)i�1/2 are approximated by central differences, and

k = Dr/(Dl + Dr) with Dl = ixi,j�xi�1,ji and Dr = ixi+1,j � xi,ji. Derivatives with respect to g are approximated

in a similar way. Given that the velocity nodes are uniformly spaced in logical space, a standard central

difference is appropriate. The basic idea in Eq. (17) is to weight the derivatives by cell size such that the

correct order of approximation is maintained in a curvilinear mesh. On a uniform Cartesian mesh, the
scheme reduces to a central difference.

The pressure and viscous terms in the momentum equation are discretized using the finite-volume for-

mulation. Consider a velocity cell (see Fig. 6),
r �D � 1

AX

Z
X
r �DdA ¼ 1

AX

Z
oX

D � ndl � 1

AX
ðD � nDlÞE þ ðD � nDlÞW þ ðD � nDlÞN þ ðD � nDlÞS
� �

;

where AX is the cell area and Dl face lengths. The derivatives in the tensor D on the face centers are com-

puted by finite difference through Eqs. (14) and (15). The viscous terms are treated explicitly in our method.
The same finite-volume methodology is applied to the pressure equation (9) on the pressure cells. This is

very well explained in [24], and the final result is expressed in curvilinear coordinates, as
. ALE mesh. The pressure p is defined at the cell center while both Cartesian velocity u and v are defined on the cell corner.



Fig. 7.

line a f

square

J. Li et al. / Journal of Computational Physics 208 (2005) 289–314 297
G11pn
� �

iþ1=2;j
� G12pg
� �

iþ1=2;j
� G11pn
� �

i�1=2;j
þ G12pg
� �

i�1=2;j
� G21pn
� �

i;jþ1=2
þ G22pg
� �

i;jþ1=2

þ G21pn
� �

i;j�1=2
� G22pg
� �

i;j�1=2
¼ RHS; ð18Þ
where
G11
iþ1

2
;j ¼ J�1 x̂gxg þ ŷgyg

� �
iþ1

2
;j
;

G12
iþ1

2
;j ¼ J�1 x̂gxn þ ŷgyn

� �
iþ1

2
;j
;

G21
i;jþ1

2
¼ J�1 xgx̂n þ ygŷn

� �
i;jþ1

2

;

G22
i;jþ1

2
¼ J�1 xnx̂n þ ynŷn

� �
i;jþ1

2

are Christoffel symbols which measure the degree of deformation of a coordinate system. This is a well-

investigated system as far as the interior points are concerned. There is a subtlety in the numerical

approximations of the Christoffel symbols [24]. The hat ð^Þ there indicates that the derivatives are to

be approximated with two-points finite difference,
x̂g
� �

i�1
2
;j
¼ x̂i;jþ1 � x̂i;j;

x̂nð Þi;j�1
2
¼ x̂iþ1;j � x̂i;j;
while the derivatives without ð^Þ are to be approximated with four-points finite difference,
xg
� �

i�1
2
;j
¼ 1

4
ðxi;jþ1 � xi;j�1 þ xi�1;jþ1 � xi�1;j�1Þ;

xnð Þi;j�1
2
¼ 1

4
ðxiþ1;j � xi�1;j þ xiþ1;j�1 � xi�1;j�1Þ:
Similar approximations are used for derivatives of ŷ and y.
The novelty of our pressure discretization is the treatment of a mixed boundary condition. In Fig. 7,

the thick solid represents a structure–fluid interface (a Neumann condition) and the thick dashed line a
Mixed boundary condition for the pressure. The thick solid represents a solid wall (a Neumann condition) and the thick dashed

ree-surface (a Dirichlet condition). The black circle is the transition point. The Dirichlet boundary condition is imposed at black

s and the Neumann condition at blank squares on the boundary.
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free-surface (a Dirichlet condition). The black circle is the transition point. The Dirichlet boundary con-

dition is imposed at black squares and the Neumann condition at blank squares on the boundary. The

pressure to be computed is defined at the cell center, represented by blank circles. The Neumann condi-

tion was addressed by previous authors [24], and is incorporated naturally in Eq. (18). There is no need to

compute the pressure derivatives on the Neumann boundary. However, the derivative should be estimated
at off-boundary points. One such point is indicated by A in Fig. 7. There is some ambiguity on how this

derivative should be computed, and one-sided approximations next to the boundaries
ðpgÞiþ1
2
;1 ¼

1

2
ðpi;2 � pi;1 þ piþ1;2 � piþ1;1Þ:
must be used. On the free-surface, the pressure is given by Eq. (10). We use the simplest finite differences to

approximate the pressure derivatives on the free-surface:
ðpgÞiþ1
2
;1 ¼ pi;1 � pi;0 þ piþ1;1 � piþ1;0;

ðpgÞi;1
2
¼ 2ðpi;1 � pi;0Þ;

ðpnÞi;1
2
¼ 1

2
ðpiþ1;0 � pi�1;0Þ;
with one exception at the transition cell indicated by B where pi�1,0 is on the fluid-structure interface and is

unknown. We use a one sided finite-difference for simplicity,
ðpnÞi;1
2
¼ ðpiþ1;0 � pi�1;0Þ:
The solution of the discrete Poisson�s equation (18) is the most time-consuming part of our Navier–
Stokes solver and, consequently, an efficient solution is crucial for the performance of the whole method.

The multigrid method is arguably the most efficient method: to reduce the error in the discretization of

Poisson�s equation by a constant, the multigrid method requires a fixed number of iterations, independent

of the mesh size. Our multigrid method was adapted from the one developed in [21, Chapter 6]. The trick is

to transform a system with non-homogeneous boundary conditions into a system with homogeneous

boundary conditions. In the later system, all terms related to the boundary conditions are moved to the

right-hand side, so that the system is assembled in a unified form for both interior and boundary cells as
Cne
ij piþ1;jþ1 þ Ce

ijpiþ1;j þ Cse
ij piþ1;j�1 þ Cn

ijpi;jþ1 þ Cc
ijpij þ Cs

ijpi;j�1 þ Cnw
ij pi�1;jþ1

þ Cw
ijpij þ Csw

ij pi�1;j�1 ¼ RHS; ð19Þ
where C�
ij are nine relevant coefficients related to cell (i, j). These coefficients are zero when the relevant pres-

sure terms are not defined inside the physical domain. The fact that the discrete pressure equation has the
same form for both interior and boundary cells allows us to write out the Gauss–Seidel smoother in a sim-

ple and unified form:
pmþ1
ij ¼ 1

Cc
ij

ðRHS� Cne
ij p

m
iþ1;jþ1 � Ce

ijp
m
iþ1;j � Cse

ij p
mþ1
iþ1;j�1 � Cn

ijp
m
i;jþ1 � Cs

ijp
mþ1
i;j�1 � Cnw

ij p
m
i�1;jþ1

� Cw
ijp

mþ1
i�1;j � Csw

ij p
mþ1
i�1;j�1Þ;
where m is the number of the Gauss–Seidel iterations. We generally observe that our multigrid method con-
verges slightly faster with the mixed boundary condition than the pure Neumann condition.

We show how the assemblage of the coefficients is done for the transition cell. This is the most compli-

cated case illustrating the originality of our method. For the cell indicated by B in Fig. 7, the derivatives on

the east face are approximated as
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ðpnÞiþ1
2
;1 ¼ piþ1;1 � pi;1;

ðpgÞiþ1
2
;1 ¼ piþ1;1 þ pi;1 � piþ1;0 � pi;0:
On the west face,
ðpnÞi�1
2
;1 ¼ pi;1 � pi�1;

ðpgÞi�1
2
;1 ¼

1

2
ðpi�1;2 þ pi;2 � pi�1;1 � pi;1Þ;
where we switch to the formula for Neumann condition as the pressure pi�1,0 is on the fluid–structure inter-

face and is not known. The north face is an ordinary interior face, where the derivatives are approximated
by the conventional formula,
ðpnÞi;3
2
¼ 1

4
ðpiþ1;2 � pi�1;2 þ piþ1;1 � pi�1;1Þ;

ðpgÞi;3
2
¼ pi;2 � pi;1:
And finally, on the south face,
ðpgÞi;1
2
¼ 2ðpi;1 � pi;0Þ;

ðpnÞi;1
2
¼ piþ1;0 � pi;0;
where we switch to the one-sided finite difference. The pressure equation for cell B is therefore
G11
iþ1

2
;1ðpiþ1;1 � pi;1Þ þ G12

iþ1
2
;1ðpiþ1;1 þ pi;1 � piþ1;0 � pi;0Þ � G11

i�1
2
;1ðpi;1 � pi�1Þ �

1

2
G12

i�1
2
;1ðpi�1;2 þ pi;2 � pi�1;1

� pi;1Þ þ
1

4
G21

i;3
2
ðpiþ1;2 � pi�1;2 þ piþ1;1 � pi�1;1Þ þ G22

i;3
2
ðpi;2 � pi;1Þ � G21

i;1
2
ðpiþ1;0 � pi;0Þ � 2G22

i;1
2
ðpi;1 � pi;0Þ

¼ RHS:
The pressure terms pi+1,0 and pi,0 on the boundary are known and are therefore moved to the right-hand
side. On the other hand, the pressure pi-1,0 on the solid boundary is not known but does not figure in the

above equation. Hence Cse
i;1, C

s
i;1 and Csw

i;1 are zero. The other coefficients are
Cne
n;1 ¼ � 1

4
G21

n;3
2
;

Cn
n;1 ¼ þ 1

2
G12

n�1
2
;1 þG22

n;3
2
;

Cnw
n;1 ¼ þ 1

2
G12

n�1
2
;1 þ 1

4
G21

n;3
2
;

Ce
n;1 ¼ G11

nþ1
2
;1 �G12

nþ1
2
;1 � 1

4
G21

n;3
2
;

Cc
n;1 ¼ �G11

nþ1
2
;1 �G12

nþ1
2
;1 �G11

n�1
2
;1 � 1

2
G12

n�1
2
;1 �G22

n;3
2

�2G22
n;1

2
;

Cw
n;1 ¼ G11

n�1
2
;1 � 1

2
G12

n�1
2
;1 þ 1

4
G21

n;3
2
:

3.4. Axisymmetric flows

We also investigate axisymmetric flows in this work. Under the assumption of axisymmetry, the conti-

nuity equation is
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; ð22Þ
where u and v are the axial and radial velocities, and p the pressure. The 2D Cartesian finite-volume dis-

cretization can be extended to axially symmetric flows by changing the cell volumes and cell faces to axially

symmetric geometry. The area of the cell faces is the length of the 2D cell side multiplied by the radius of the

center of the side. The volume of an axisymmetric control volume is
X ¼ 1

6

X3
i¼1

ðri þ riþ1Þðriziþ1 � riþ1ziÞ þ ðr4 þ r1Þðr4z1 � r1z4Þ
" #

; ð23Þ
where the subscripts 1–4 refer to the vertices labelled counter clockwise.
4. Validations

The new feature of our numerical method is the ability to resolve accurately the interaction between a

free-surface and a solid structure. As a first step, we ensure that our method is accurate for two particular

cases; flows with pure Dirichlet conditions for velocity (a solid structure) and flows with only free surfaces.

We investigate the wake developing behind a cylinder in a uniform background flow. We validate our

numerical method by comparing our numerical results to laboratory observations, and numerical results.
We then investigate the dynamics of a bubble rising in a quiescent liquid. The unsteady oscillating bubble is

also computed in order to compare with the theory of Prosperetti [26], and the normal-mode analysis. Fi-

nally, in Sections 5 and 6, the method is applied to a problem of interaction between a solid structure and a

free-surface. We study a mass-spring system interacting with a water surface.
4.1. Flow past cylinder

The lid-driven flow in a two-dimensional polar cavity is a standard test case for the numerical methods
written in curvilinear coordinates [15,20,21]. An interesting case is for Reynolds number Re = 350 (based on

the lid velocity and the radius of the inner circle), where a discrepancy between the numerical and exper-

imental data is observed and is attributed to the three-dimensional effects in experiments [27]. A more geo-

metrically challenging flow is the uniform flow past a cylinder. This flow field depends strongly on the

Reynolds number Re = 2aqU/l, where a is the radius of the cylinder, U is the velocity of the background

flow, and l is the dynamic viscosity. For 6 6 Re < 40, a steady state wake forms on the leeward side of the

cylinder. This steady wake takes the form of two symmetric vortices [28]. This flow is used to check the

spatial and temporal accuracy of our numerical method. To facilitate the comparison, we use similar
numerical parameters as in [15]. The symmetric flow is solved using a non-orthogonal coordinate system

with 48 · 80 mesh points in the radial and circumferential directions respectively. Exponential spacing of

grid lines both in the radial and in the circumferential direction were used to cluster the points leeward

of the cylinder. The flow domain is composed of two non-concentric half circles with the radius of the outer
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circle 40 times larger than that of the inner circle, and the center of the inner circle was displaced upstream

by 10 units.

The time evolution of the separation length for Re = 40 is computed and shown in Fig. 8, together with

well-known numerical and experimental results. The symbol · represents the results of this study, the tri-

angle the experimental data of Coutanceau and Bouard [28], the solid line the numerical results of Rosen-
feld et al. [15], and the dashed line those of Collins and Dennis [29]. Good agreement is obtained, especially

at the initial stages of the flow evolution (t < 8). At time t = 8, our results agree well with the experimental

data and that of Rosenfeld et al. At t = 10, all three numerical values are below the experimental value but

our one is the closest. At t = 12, Collins and Dennis�s value agrees the best with the experimental data, ours

is slightly smaller and that of Rosenfeld et al. is yet smaller. Finally, the evolution of the separation length is

computed using three different meshes and shown in Fig. 9, where the convergence of the numerical method

is clearly demonstrated.
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Fig. 8. Time evolution of the separation length behind the circular cylinder at Re = 40.

Fig. 9. (a) Time evolution of the separation length behind the circular cylinder at Re = 40. The solid line is computed on a 96 · 160

mesh, the dashed line on a 48 · 80 mesh and the dotted line on a 24 · 40 mesh. (b) A zoom between time 10 and 100.
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4.2. Bubble dynamics

Bubble dynamics includes several well-studied free-surface problems. We first validate the spatial accu-

racy of our method against the well-known rising bubble problem. In this work, steady solutions are ob-

tained in the framework of the rising bubble by setting the velocity at the far field equal to �Us, where
Us is the final speed we prescribe. We adjust the gravity g in order to reach a steady state where the bubble

stays at a same position. Fig. 10 summarizes our numerical simulations, where we have used a 64 · 64 mesh

in all calculations, and the radius of the initial spherical bubble was unity while the outer radius of the com-

putational domain was 50. This figure shows the bubble shapes for several Reynolds and Weber numbers

and are close to identical with the numerical results of Ryskin and Leal [11]. The slight asymmetry seen in

some of the dashed bubble shapes is an artifact, because the bubble shapes from Ryskin and Leal were

traced from a scanned image.

The bubble rising from rest is computed in the framework at rest using the same gravity g as obtained in
the above simulations. This is a time-dependent flow problem: while the bubble reaches a steady rising

speed Us at the end, its position and accordingly the numerical mesh change constantly. Fig. 11 shows

superpositions of bubble shapes for We = 2 and We = 4 respectively at Re = 10. The solid lines represent

the bubble shape in the framework of the rising bubble and the dashed lines in the framework at rest. There

is no discernible difference. The difference in the final rising speed between the two sets of simulations is

negligible (less than 0.0098%). This comparison provides a validation of the temporal accuracy of our

method. Mass conservation is an important criteria characterising the quality of a numerical method for

moving interface problems. Our method performs very satisfactorily in this matter. For instance, the max-
imum loss of mass in the two simulations of the bubble rising problem in the framework at rest is less than

0.12%, and 0.026% in the framework of rising bubble.
Fig. 10. Comparison between our numerical results (solid lines) and the numerical results of Ryskin and Leal [11] (dashed lines).



Fig. 11. Comparisons bubble shapes between simulations in the framework of the rising bubble (steady solutions) and the framework

at rest (unsteady solutions). The bubble shapes of the unsteady solutions are shifted to best fit those of the steady solutions. The solid

lines represent the bubble shape in the framework of the rising bubble and the dashed lines in the framework at rest. We cannot discern

the dashed lines as the agreement is excellent.
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The spatial and temporal accuracy of our method is finally validated against theoretical solutions of an

unsteady oscillatory bubble initially at rest. In the classic normal-mode analysis [30], the interface of an
oscillating bubble is described as
Rðh; tÞ ¼ R0 þ �nP nðcos hÞ sinðxntÞ;

where R0 is the unperturbed radius, Pn the Legendre polynomial of degree n, and
x2
n ¼ ðnþ 1Þðn� 1Þðnþ 2Þ c

qR3
0

the frequency of oscillation. If the viscosity is taken into account, the amplitude decays as e�bnt, where the

rate of damping
bn ¼ ðnþ 2Þð2nþ 1Þ m

R2
0

:

This normal-mode analysis is, however, not suitable for the initial-value problem studied here [31]. The ini-
tial-value problem is best described by a solution obtained by Prosperetti [26] expressed by Laplace

transform:
~aðpÞ ¼ 1

p
a0 þ

p _a0 � x2
na0

p2 þ 2b0p þ x2
n þ 2bb0p~QðpÞ

 !
ð24Þ
where ~a is the Laplace transform of the amplitude, a0 the initial amplitude, _a0 its derivative, b defined by
b ¼ nðnþ 2Þ
2nþ 1

ð25Þ
and ~Q
~QðpÞ ¼ � 1

1þ 1
2
CðR0

ffiffiffiffiffiffiffi
p=m

p
Þ
: ð26Þ
The geometrical function C is expressed in term of modified Bessel functions K of the second kind
C ¼ q
Knþ1=2ðqÞ
Kn�1=2ðqÞ

:

Fig. 12(a) shows the temporal evolution of the amplitude of the second mode of deformation a bubble set in
a liquid initially at rest. The physical parameters are R0 = 1, q = 1, c = 1, l = 0.01414 and �2 = 0.01. Com-

paring our numerical results with the two theories above we find an excellent agreement with Prosperetti�s



Fig. 12. Temporal evolution of the second mode of deformation of a bubble set in a liquid initially at rest. Our simulations use a mesh

of size 128 · 128 (solid lines). The theoretical curves are obtained from a normal-mode analysis (the dashed lines) and from the exact

solution to the initial-value problem (the black circles). (a) The second mode, and (b) a zoom on the second mode illustrating the

difference between the normal-mode and initial-value solutions.
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theory. Fig. 12(b) shows a close up at the sixth crest illustrating the difference between the normal-mode

and initial-value solutions. We note that the difference between the approximate normal-mode solution
and Prosperetti�s solution is significant. On the other hand, the relative difference at this crest is about

3% between our simulation and Prosperetti�s theory. The agreement on the evolution of mode 3 and mode

4 between our simulation and Prosperetti�s theory is equally excellent (not shown). This test further con-

firms that our numerical method is accurate both in space and in time.
5. Interaction between a free surface and a solid structure

The motivation of this work is to develop a numerical method that we can use to study the surface loco-

motion of semi-aquatic insects. The characteristic weight of water striders is W = 10�4 N. Walking and
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jumping on water poses no problem for water striders. In this work, we validate our numerical method on a

simplified two-dimensional mechanical model consisting of a massless plate (foot) and spring (leg) support-

ing a point mass (body). A sketch of this model is shown in Fig. 13. We model the leg as an elastic spring

with an elastic modulus k, connected to a flat plate of width 2L which initially rests on the water. In our

model, the weightW of the strider is concentrated in the solid body above the spring. Following [32, p. 243],
the static depth h of the plate compared to the unperturbed water level as well as the water surface are de-

duced theoretically for a periodic case.

This theoretical solution is expressed in terms of an elliptic integral which can only be computed numer-

ically. Nevertheless, an analytical solution can be expressed in terms of elementary functions for the special

case where the distance d between two plates is +1,
Fig. 13

solid li

and th
W ¼ ch
lc

1� h
2lc

� �2
 !1=2

þ 2L
lc

2
4

3
5: ð27Þ
The capillary length of water is lc = (c/qg)1/2 � 2.72 · 10�3 m, where q is the density of water, and g is the

gravity acceleration.

To simplify the problem, we study a symmetrical case where we assume the solid plate (foot) has only a

vertical velocity, equal to that of the fluid below the plate:
v ¼ V plate: ð28Þ

In a conventional problem, the boundary condition on the solid structure would be a Dirichlet condition

imposed on the velocity. However, in the above system, we know the force acting on the plate instead of the

velocity. The boundary condition on the solid plate is a balance between the force of the spring Fspring and

the force Fwater exerted on the plate by the water:
F spring ¼ F water; ð29Þ

and
F water ¼
Z
S

�p þ 2l
ov
oy

� �
dS þ 2c cosð/Þ; ð30Þ
where S is the area of the plate, and / the angle between the water surface at the contact point and the
horizontal. A single step of our flow solver computes the velocity field using a given velocity Vplate on

the solid plate. This velocity is, however, not known à priori. We employ a secant iterative method [33]

to find Vplate such that Eq. (29) is satisfied. The motion of the solid body is governed by Newton�s second
law:
. A periodic array of mechanical water striders resting on a water surface. The mechanical water striders are drawn in thick

nes, while the water surface in thine solid lines. d is the distance between the plates, and / the angle between the water surface

e horizontal level at the contact point.
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M
dV
dt

¼ F spring �Mg ¼ kDl�Mg; ð31Þ
where M is the mass of the solid body, V its speed, and Dl is the compression of the spring. This ordinary

equation is coupled with the flow solver. It is solved implicitly in order to obtain a stable numerical scheme.

5.1. Static solution

We first check the accuracy of our method against a static solution. To avoid numerical boundary con-
ditions at the far field, we construct a periodic solution (see Fig. 13), using the theoretical results in [32, p.

243]. The equilibrium condition on the water surface in a gravitational field is
2z
a2

� z00

ð1þ z0Þ
3
2

¼ constant; ð32Þ
where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c=qg

p
is the capillary constant. Here we note z as the vertical coordinate (to be consistent with

[32]). We can choose z(0) = a2z00(0)/2 at a symmetric point x = 0 where z 0 is zero. For this choice, the con-

stant in the above equation is zero. Multiply Eq. (32) by z 0, and integrate it, we obtain
1

ð1þ z0Þ
1
2

¼ A� z2

a2
;

where we have A ¼ 1þ zð0Þ2
a2 . So the second derivative at the symmetric point is
z00ð0Þ ¼ 2

a
ðA� 1Þ

1
2: ð33Þ
Finally, the distance d between the two plates is expressed in term of an elliptic integral,
d ¼ a
2

Z /

0

cos ndnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� cos n

p ; ð34Þ
where / the angle between the water surface and the horizontal level at the contact point.

It is easy to construct a static solution from the parameters A and /. For A = 1.002 and / = 0.5738, the

distance between two plates d is 8.0 (Eq. (34)), and from Eq. (33) the curvature at the symmetrical point

j = 0.04472. A static solution is constructed from the above parameter for L = 1.0, where 2L is the width

of a plate. Using the symmetry of the solution, the computation is done in one half of the domain, for which

a mesh of size 16 · 16 is shown in Fig. 14(a). A cubic spline is used to obtain a continuous smooth param-

etrization of the surface and to compute the surface curvature accurately. A third order forward finite-dif-

ference scheme, in consistent with the accuracy of cubic spline, is used at the contact points to estimate the
first derivatives of the parametrization. The numerical error of the curvature at the symmetric point is

shown in Fig. 14(b) in a logarithm scale for several mesh size and a second order convergence of the cubic

spline is achieved.

An interesting test is the verification of the static solution constructed above. Two questions follow, the

stability of the approximate solution and its numerical convergence to the theoretical solution. A numerical

test is done for c = 1.0, q = 1.0, g = 0.5 and l = 0.2, with an equilibrium weight W = 0.9454 sitting on the

solid plate (corresponding to the stiff spring case of k = +1), where
W ¼ c sinð/Þ þ L½qgh� jð0Þ�;

and the water level h ¼ zð0Þ � zðd

2
Þ is 0.715894.

We start the simulation with the theoretical solution at the rest. Because of numerical errors on a finite

mesh, the numerical solutions deviate from this solution, and oscillate around new steady solutions



Fig. 14. (a) A mesh of size 16 · 16. (b) Second order convergence of the curvature at the symmetric point. The �+� symbol represents

the numerical error as function of the number of grid points N · N in a logarithm scale, while the dashed line a power function with an

exponent �1.97.
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depending on the numerical meshes. The time evolution of the solid plate position is shown in Fig. 15(a) for

four meshes, and they all reach a steady position at a large time. The solid (horizontal) line is the theoretical

value. The numerical error as function of the number of grid points N · N is shown in Fig. 15(b) in a log-

arithm scale and a second order convergence is demonstrated.

5.2. Dynamical solution

The ability of our numerical method to handle the interaction between a solid structure and a free-surface

is further demonstrated on a dynamical problem. In this subsection, we are interested in a jumping process of

a single strider jumping on the water surface. For a strider of weight of order 10�4 N, the depth h is small

compared to the capillary length lc, typically h/lc = 0.05. For our application, L is of order of the leg diam-

eter, �8 · 10�5 m, and so typically L/lc = 0.015. In the equilibrium state, Eq. (27) is therefore approximated

by
Fig. 15

solid (h

represe

functio
. (a) Evolution of the solid plate position for different mesh sizes comparing to the theoretical value of the static solution. The

orizontal) line is the theoretical value. (b) Second order convergence of the solid plate position at the final time. The �+� symbol

nts the numerical error as function of the number of grid points N · N in a logarithm scale, while the dashed line a power

n with an exponent �1.93.
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F s �
c
lc

� �
h ¼ ðqgcÞ1=2h: ð35Þ
The quantity c/lc has the same units as the elastic modulus of the spring, and it provides a way to measure

the strength of the spring relative to the surface tension:
n ¼ klc
c
: ð36Þ
To support the weight, the spring is compressed to an equilibrium displacement e = W/k. If an additional

compression c < e is applied to the spring of the model strider when placed on a solid surface, then the

weight will oscillate around its equilibrium position. If c > e, the strider will separate from the surface.

We define the ratio of the additional compression c to the equilibrium compression e as
g ¼ c
e
:

In this subsection, we consider a similar problem when such a mechanical strider is posed on a water sur-

face. We take the density of water q = 1.007 · 103 kg/m3 and the surface tension to be c = 7.28 · 10�2 N/m.

Using the radius of the strider leg (�4 · 10�5 m) as a length scale, we find that the capillary time is given by

T = (qL3/c)1/2 = 2.957 · 10�5 s, the ratio of gravitational to capillary forces is gT2/L = 2.12 · 10�4, and the
. The motion of a mass-spring system which is initially under compression and resting on water. The physical parameters for

mputation are L = 1, h = 1, c/e = 100, and klc/c = 2.
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ratio of viscous to capillary stress is l=
ffiffiffiffiffiffiffiffi
qcL

p
¼ 0:0185, where the dynamic viscosity of water is taken to

have value l = 1.002 · 10�3 kg/m s.

We compute the motion of a mass-spring system which is initially under compression and resting on

water. The physical parameters for this computation are L = 1, h = 1, c/e = 100, and klc/c = 2. The simula-

tion is performed in a box of dimensionless size 400 · 400 so that several capillary lengths are included and
a symmetry condition at the far field is a good approximation. At the initial time, the water surface is

almost flat (Fig. 16). As the initial compression c/e = 100 is very large, the interaction process is in a

non-equilibrium regime. In the successive pictures (t = 5, 10 and 15), Fig. 16 illustrates a formation of a

crater where the solid plate is pushed down, and that a local disturbance propagates outwards from the

plate, with negligible disturbance in the far field. The velocity field in the fluid associated with this distur-

bance is shown in Fig. 17 at time t = 1, 2, 3 and 4, showing the water is pushed down below the solid plate

and returns up beside to form a crater. There is no theoretical solution for this flow problem. The compar-

ison of our computations on meshes of different sizes is shown in Fig. 18. A clear convergence is observed as
the mesh is refined. The discrepancy occurs on the outgoing wave front, which is due to the poor resolution

of the coarse meshes. Nevertheless, on the crater part where the solid plate is pushed down, the computa-

tion on the coarsest mesh agrees very well with that of the finest mesh. The dynamics on this later region is
Fig. 17. The velocity field at time t = 1, 2, 3 and 4. The physical parameters for this computation are L = 1, h = 1, c/e = 100, and k lc/

c = 2.



Fig. 18. Positions of the free surface and the solid plate at time t = 15. The solid line represents the computation on a high resolution

mesh 128 · 128, and the dashed line (a) on a coarse mesh 32 · 32, and (b) on an intermediate mesh 64 · 64. The dotted line represent

the initial position. The physical parameters in this computation are L = 1, h = 1, c/e = 100, and klc/c = 2.

310 J. Li et al. / Journal of Computational Physics 208 (2005) 289–314
the utmost factor determining the response of the mechanical strider. The accuracy of our method is

therefore good enough to capture the main feature of this problem even on a coarse mesh.
6. Minimum compression for jumping off water

Our numerical method is used to explore the critical compression required for a model mechanical stri-

der to jump off the water surface. When the mechanical strider is placed on a solid surface, it will take off if

the spring becomes completely relaxed (the compression falls to zero). This occurs if the extra compression

exceeds the equilibrium value, n > 1. When the mechanical strider attempts to jump off water, the water

beneath the foot also moves and absorbs part of the energy. The minimum extra compression required
to jump off the surface therefore increases. The separation from the water surface depends on how the

leg is detached from the water. Since the body and legs of the water strider are covered by thousands of

hairs, its legs are effectively non-wetting. As a simplification, we therefore approximate the detailed detach-

ment process by applying the same criterion that the spring compression falls to zero, as for the solid sur-

face. We have performed a series of computations in order to delineate the minimum compression for

separation from the surface. Fig. 19 shows the variation of the minimum compression for jumping as a
Fig. 19. Diagram of ejection based on the spring model. The equilibrium height is h = 1 and the plate width L = 1. The �+� symbol

represents ejection and the �·� symbol non-ejection. The two regimes are separated by a straight line 0.175(klc/c) + 1.2 (the dashed line)

for stiff springs (top figure), and by a power law 0.332 (klc/c)
0.7 + 1.0 with an exponent 0.7 (the dotted line) for weak springs (bottom

figure). e is the equilibrium compression of spring, and c the extra compression, k the spring constant, lc = (c/qg)1/2 the capillary length,
and c the surface tension constant.
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function of the dimensionless spring modulus for a strider of weight equivalent to a depth h = 1.0 and a

width L = 1. The results are surprisingly simple. The minimum compression for jumping varies linearly with

spring constant (the dashed line) for stiff springs, and follows a power law with an exponent 0.7 (the dotted

line) for weak springs. The straight line is
Fig. 20
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b(klc/c)
0:175 klc=cð Þ þ 1:2;
and the power law is
0:332 klc=cð Þ0:7 þ 1:0:
The quantity klc/c is a measure of the strength of the spring compared to the surface tension of the water

surface. When it is equal to zero, the spring is extremely weak and the minimum compression converges to 1

as the spring becomes weaker and weaker relative to the surface tension, corresponding to the case of an

effectively solid surface.

It is interesting to examine the evolution of different forces versus time. Two cases are shown in Fig. 20,

the left figure for a weak spring (klc/c = 0.125 and c/e = 1.08) and the right figure for a strong spring (klc/c
= 15 and c/e = 3.875). Both calculations correspond to cases in which the mechanical strider is just able to
separate from the water surface. In these figures, time is rescaled in terms of the surface tension relaxation

time (qL3/c)1/2. We observe that although the spring force (represented by the solid line) is initially large, it

is quickly balanced by the capillary force through deformation of the interface close to the plate (repre-

sented by the dashed line), and they come into balance after a dimensionless time of about 2 for both cases.

The equilibrium capillary force computed by Eq. (35) is represented as the dotted line, which is very differ-

ent form the real surface tension force. This shows that the whole jumping process is in a non-equilibrium

regime.
. The evolution of forces against time. The spring is weak on the left figure (klc/c = 0.125 and c/e = 1.08) while it is strong on the

ne (klc/c = 15 and c/e = 3.875). The solid line represents the elastic force of spring, the dashed line the capillary force and the

line the equilibrium force computed by Eq. (35). This figure shows that the jumping process is in a non-equilibrium regime.

1

pe a of the linear straight and the coefficient b of the power law for different weights

0.5 1.0 2.0 3.0 4.0 5.0 6.0

0.116 0.175 0.260 0.328 0.39 0.45 0.495

0.255 0.332 0.44 0.52 0.585 0.63 0.69

0.255 0.25494 0.2560 0.257 0.256 0.250 0.2558

1.0 0.663 0.446 0.354 0.297 0.258 0.234

o regimes of ejection and non-ejection are separated by a straight line a(klc/c) + 1.2 for stiff springs, and by a power law
0.7 + 1.0 for weak springs. The rescaled coefficient b is nearly a constant.
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6.1. Effect of the depth

We have computed the critical values for different weights that are equivalent to equilibrium depths h

ranging from 0.5 to 6. The key result of this work is that the minimum compression for the strider to sep-

arate from the surface varies linearly with spring constant a(klc/c) + 1.2 for stiff springs, and by a power law
b(klc/c)

0.7 + 1.0 for weak springs. The linear slope a and the coefficient b of the power law are shown in

Table 1. These curves collapse into a master curve if we use a proper scaling: using the curve for h = 0.5

as a reference curve for example, we change the variable for each curve to aklc/c, where a is a constant cor-

responding to the curve such that the rescaled straight line coincides with the reference one. a is shown in

the last row of Table 1. Then the rescaled coefficient for the power law will be b = ba0.7. As shown in Table

1, b is nearly a constant 0.255. A graphic representation is Fig. 21(a). The dependency of a as function of h

is a power function with an exponent roughly equals to �0.6. This is shown in Fig. 21(b). This suggests that

a proper scaling also involves the equilibrium depth h, and that a universal curve for the minimum com-
pression depends on kl1:6c =ch0:6.

6.2. Effect of the plate width

We have also investigated the effect of the width of the plate (foot) for a fixed high h = 1, and our obser-

vations that a linear law a(klc/c) + f for strong springs and a power law b(klc/c)
0.7 + 1.0 for weak springs

applies for small values of L (L < 2). The coefficients are listed in Table 2: which suggests convergence

as L ! 0. As the plate width increases beyond values of order 1, an increasing amount of energy is absorbed
by the fluid before the strider can take off the water surface leading to a change of the functional form of the

scaling laws for the minimum compression.
Fig. 21. (a) The slope a (represented by the �+� symbol) of the linear straight and the coefficient b (represented by the �·� symbol) of the

power law as function of the depth h. The star symbol represents the rescaled coefficient b of the power law. The value of the dotted-

line is 0.255. (b) a (represented by the �+� symbol) as function of the depth h is fitted by a power function 0.665h�0.583. Both axes are

represented in the log scale.

Table 2

The slope a of the linear straight and the coefficient b of the power law for different widths

L 0.1 0.2 0.5 1.0 1.5 2.0

a 0.193 0.192 0.185 0.175 0.158 0.14

b 0.345 0.34 0.335 0.332 0.33 0.32

f 1.2 1.2 1.2 1.2 1.25 1.3
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7. Conclusion

An ALE moving mesh method for solving two-dimensional and axisymmetric moving-boundary prob-

lems, including the interaction between a free-surface and a solid structure, is presented. This method em-

ploys a body-fitted grid system where the gas–liquid interface and solid–liquid interface are lines of the grid
system. The main novelties of this work lie in the treatment of boundary conditions. For reasons of sim-

plicity and clarity, we employ an explicit projection method, and all boundary conditions are to be satisfied

on time level n. Based on a Finite-Volume formulation, complicated dynamic boundary conditions are

incorporated naturally and accurately on the free-surface. On the solid structure, a usual boundary condi-

tion is a Dirichlet condition imposed on the velocity. However, the interaction between a liquid and a solid

often requires boundary conditions to be imposed on the forces acting on the solid structure. In this work, a

single step of our flow solver uses a given velocity on the solid structure. This velocity is, however, not

known à priori. We therefore employ an iterative method to find the correct velocity on the solid structure
such that the force balance is satisfied there. The pressure equation needs special care at the transition point

where the free-surface and the liquid–solid interface meet. This is nicely treated by converting the discrete

pressure equation into a unified form (Eq. (19)), which is solved by an efficient multigrid method. This work

is part of our effort to incorporate complicated physics involving moving boundaries in a general and flex-

ible framework. We have included new abilities, such as handling a viscoelastic fluid and the Marangoni

effect induced from a surfactant, which we will present in a separate paper.

Our method is validated on the uniform flow passing over a cylinder (a two-dimensional flow with a solid

structure) and several problems of bubble dynamics (axi-symmetrical flows with a free surface) for both
steady and unsteady flows. Good agreement with other theoretical, numerical and experimental results is

obtained. An incentive of this work is to develop a numerical method which can be used to study the hydro-

dynamics underlying the surface locomotion of semi-aquatic insects. Further validation is therefore the

investigation of a two-dimensional mechanical strider interacting with a water surface. We have constructed

a theoretical static solution on which we studied the convergence of our method. Further demonstration of

the abilities of the method is shown on a dynamical problem of jumping on a water surface. The main result

of this investigation is the computation of the minimum spring compression required to separate from the

water surface starting from an initial state of rest. The study is motivated by the bio-locomotion problem of
the insects which jump on water, although our spring-mass model is a much simplified analogue designed to

capture some of the fundamental physical constraints on the motion. We find the critical compression re-

quired to jump from the water varies linearly with spring constant for stiff springs and algebraically with

exponent 0.7 for weak springs. We are currently working on a simplified dynamical model for this process.
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